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ABSTRACT

The novelty of this research lies in the

development of a new battery management

system (BMS) for electric vehicles, which

utilizes an artificial neural network (ANN)

and fuzzy logic-based adaptive droop

control theory. This innovative approach

offers several advantages over traditional

BMS systems, such as decentralized

control architecture, communication-free

capability, and improved reliability. The

proposed BMS control system

incorporates an adaptive virtualadmittance,

which adjusts the value of the virtual

admittance based on the current state of

charge (SOC) of each battery cell. This

allows the connected battery cells to share

the load evenly during charging and

discharging, which improves the overall

performance and efficiency of the electric

vehicle. The effectiveness of the proposed

control structure was verified through

simulation and experimental prototype

testing with three linked battery cells. The

small signal model testing demonstrated

the stability of the control, while the

experimental results confirmed the

system’s ability to evenly distribute the

load among battery cells during charging

and discharging. We introduce a unique

battery management system (BMS) for

electric cars in this paper. Our suggested

BMS was implemented and tested

satisfactorily on a 100 kWh lithium-ion

battery pack. When compared to typical

BMS systems, the results show a

surprising 15% increase in overall energy

efficiency. Furthermore, the adaptive

virtual admission function resulted in a

20% boost in battery life. These large

gains in energy efficiency and battery

longevity demonstrate our BMS’s efficacy

and superiority over competing systems.

Overall, the proposed BMS represents a

significant innovation in the field of

electric vehicle battery management. This

combination of ANN and adaptive droop

control theory based on fuzzy logic
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provides a highly efficient, reliable, and

economical solution for EV battery cell

management.

1. INTRODUCTION
1.1 BACKGROUND AND

MOTIVATION.

Electric vehicles (EVs) are growing in

popularity due to their lower

environmental impact and lower operating

costs compared to conventional gasoline-

powered vehicles. However, an electric

vehicle’s battery management system

(BMS) is an important component that

determines the performance, safety, and

longevity of a battery pack. The BMS is

responsible for monitoring the state of

charge (SOC) and state of health (SOH) of

the battery cells, balancing the charge and

discharge of individual cells, and

protecting the battery from overcharging

and overheating. Traditional BMS systems

usually use centralized control structures

that rely on complex communication

networks to monitor and manage the

battery pack. However, these systems can

be expensive, complex, and prone tofailure,

as they rely heavily on communication

channels that may be susceptible to

disruption or interference. In addition,

centralized BMS systems can lead to

uneven load sharing between battery cells,

which can reduce battery

pack efficiency and lifetime. To address

these issues, the researchers proposed a

new BMS architecture that utilizes an

artificial neural network (ANN) and

adaptive droop control theory based on

fuzzy logic. This approach offers several

advantages over traditional BMS systems,

such as decentralized control architecture,

communication-free capability, and

improved reliability. The proposed BMS

control system implements adaptive virtual

admittance, which is similar to the virtual

resistance control structure used in DC

microgridconnected sources. The value of

the virtual admittance is adjusted based on

the current SOC of each battery cell,

enabling the connected battery cells to

evenly share the load during charging and

discharging. This improves the overall

performance and efficiency of the EV, as

well as the longevity of the battery pack.

Progress has been made in the automotive

industry in providing reliable safety

technology for drivers, pedestrians, and

passengers [1]. But as the number of cars

increased in cities, so did air pollution [2,

3]. Statistics from the European Union

show that transportation makes up nearly

27% of total greenhouse gas emissions [4,

5], with automobiles being responsible for

around 70%. EVs have been widely

adopted and recognized worldwide as a

practical solution to the emissions problem

due to their many benefits, including the
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reduction of greenhouse gas emissions and

mitigation of global warming [6, 7]. In

recent years, EVs have become a popular

and viable alternative to conventional gas-

powered vehicles [8–10]. Battery

management systems (BMS) need to

improve heat handling, charge and

discharge, power control, cell balancing,

and monitoring as their use spreads around

the world [11, 12]. The steering wheel of

the hybrid electric vehicle is shown in

Figure 1.

Figure 1: Control of a hybrid electric

vehicle.

2. LITERATURE REVIEW

Grid-connected electric vehicles (GEVs)

can educate the public about renewable

energy. This feature requires a reliable

vehicle-to-grid (V2G) scheduling method

that compensates for the variability of

renewables and protects vehicle batteries

from premature depletion. In [13], the

authors used an adaptive learning

framework to create a unique V2G

scheduling technology for integrating

renewable energy sources into microgrids.

This is the first attempt to regulate GEV

charging using renewable energy without

compromising battery integrity. This

technology could allow low-cost carbon

removal for electric vehicle owners and

small grid operators by boosting local

renewable energy and minimizing battery

life. The authors of [14] compared

different control methods for power

sharing in DC microgrids. They proved

that metaheuristic algorithms are effective

control hierarchy systems. In [15], the

authors presented an intelligent control

mechanism for a solar-powered microgrid

that stores energy in lithium-ion batteries.

DC/DC bidirectional converters with

advanced controllers can control battery

charging and discharging. Artificial neural

networks (ANNs) and bidirectional

converter management are the main

innovations of this technology. In [16], the

authors contributed a control system that

uses an artificial neural network and was

tested using a hybrid microgrid. The neural

network organizes the front-end converter

and the grid to follow the maximum power

of renewable energy sources. A power

management system based on fuzzy logic

is built to reduce grid usage. The results

show the effectiveness of the control

method and the ability to adapt. The

authors of [17] proposed a demand-side
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management-based technique to solve the

voltage imbalance in a remote microgrid.

The results show that direct power

regulation may reduce voltage imbalance

and power use. In [18], the authors

presented a decentralized virtual battery-

based droop control that can maintain bus

voltage, dispatch load power, and balance

the battery state of charge to ensure the

stability of the DC microgrid. The virtual

battery model can dynamically adjust the

reference output voltage of the droop

control loop and the virtual resistance. The

battery size was optimized based on the

total DC microgrid cost, which includes

the daily power cost from the grid and the

battery depreciation cost based on an

extended capacity degradation model for

Li-ion batteries. In order to increase the

accuracy of the control system, the droop

control approach can be used to keep the

battery and electric motor balanced at all

times. By reducing the potential for

oscillations or instability, the droop

management approach helps stabilize

battery power output and enhance the

overall system efficiency [19]. Since it

does not require complex control

algorithms, the droop control approach can

be less time-consuming to design and

implement. The droop control of EV

batteries has some drawbacks, such as the

necessity for careful calibration and the

potential for producing less power at lower

speeds. The method of droop management

can be considered as a promising means of

regulating EV batteries, but further study

is required to fully appreciate its potential

benefits and limitations [20–22]. Figure 2

shows the battery management system of a

droop-controlled electric vehicle.

Figure 2: Battery management system of a

droop-controlled electric vehicle.

potential for producing less power at lower

speeds. The method of droop management

can be considered as a promising means of

regulating EV batteries, but further study

is required to fully appreciate its potential

benefits and limitations [20–22]. Figure 2

shows the battery management system of a

droop-controlled electric vehicle. A

gradual transition to fuel-cell hybrid

electric vehicles (FCHEVs) is necessary to

help solve the problems arising from
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dependence on fossil fuels. It is common

to add energy storage systems (ESS) on

fuel cell vehicles. To realize the benefits of

FCHEVs, an appropriate energy

management system (EMS) must be

established to distribute power between the

fuel cell and energy storage devices. Due

to technology and government legislation,

the number of FCHEVs has expanded

greatly over the past decade, and several

EMS systems have been put in place. The

methods include rule-based EMS, machine

learning, and optimization-based control.

In [23], the authors evaluated EMS on the

basis of principles, technical maturity,

advantages, and negative aspects. The

study authors revealed research gaps that

need to be resolved before new, more

comprehensive approaches to reforming

existing environmental management

systems can be developed. These insights

will help researchers and electric vehicle

designers build better EMS systems [24].

Integration of electric vehicles with

microgrids has also been presented by

various researchers. In [25], the authors

discussed the bidirectional power flow of

EV charging stations. The increasing use

of renewable and distributed energy

resources has led to an increase in the

complexity, unpredictability, and

instability of power grids. Smart meters,

sensors, and better communication

networks provide more information. Data-

based control methods such as

reinforcement learning (RL) arewidespread.

Ref. [26] described how the RL approach

can be used in power system management.

The paper describes RL- based models and

solutions with frequencyregulation, voltage

control, and power management. The

authors listed safety, robustness, scalability,

and data as real problems in implementing

RL. In [27], the authors used ANN to

determine the SOC value. They found a

relative standard deviation of less than

0.1%. After 28.45 seconds of charging, the

SOC of the two batteries will differ by

0.3%, within the simulation’s margin of

error. Ref. [28] described a

photovoltaic/battery-assisted EV parking

lot using a solid-state DC-DC multiport

converter. This paper used EV energy

storage to balance the load of the

microgrid and meet the needs of the

owner. This study divided EVs into

restricted and free groups. Freedom EVs

can control the microgrid load, while

limited EVs are always charged. Adaptive

bidirectional droop control allows EVs to

independently charge or discharge with a

predetermined amount of power based on

charge level, battery capacity, departure

time, and other criteria. V2G-EV is

possible with two-way adaptive sag

control [29]. The authors of [30]

introduced the adaptive fuzzy model
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predictive control in a microgrid model

with restricted

Table 1: Comparative analysis between the

previous work and proposed work.

capacity that can react to load changes and

temporal variations. In [31], the authors

provided a sliding mode control approach

for a hybrid energy storage system. The

suggested control approach stabilizes DC

bus voltage while preserving fuel cell,

battery, and EV battery voltage. Controller

design uses adaptive law and constraint

conditions. The hybrid energy storage

control is Lyapunov-stable. Simulations

show that the suggested control technique

can stabilize the system and achieve the

control aim. The authors of [32] developed

an online EMS of a multistack fuel cell

hybrid electric vehicle to improve fuel

economy and extend the service life of fuel

cells. A comparative analysis between the

previous work and the proposed work is

presented in Table 1.

2.1 Contributions.

The main investigations of this work can

be described as follows:

(i) A revolutionary battery management

system (BMS) for electric cars that

integrates an adjustable virtual admittance

feature based on fuzzy logic and artificial

neural networks (ANN)

(ii) We have developed ANFIS (adaptive

neural fuzzy inference systems) that

combine the droop controller learning

ability of neural networks with the

interpretability and fuzzy logic of fuzzy

systems. It is well suited for modeling and

control of complex systems for EV battery

management systems

(iii) Creating a complete control method

that allows for successful battery balance,

estimation of state-ofcharge, and

monitoring of state-of-health

(iv) We have described the relationships

between the input variables and the output

variables. These rules are combined using

fuzzy logic operators to produce a set of

fuzzy antecedent and consequent terms.

The output of the ANFIS network is then

determined by defuzzifying the fuzzy

output, usually using a method such as the

centroid method

(v) One of the key contributions of

ANFIS is its ability to learn and adapt to

changes in the system over time. This is
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achieved by using an optimization

algorithm, such as the gradient descent

algorithm, which modifies the parameters

of the ANFIS network to reduce the error

between the expected and actual output.

This allows ANFIS networks to

continually improve their performance and

maintain operational stability despite

uncertainty and variability

(vi) The droop controller can be designed

to maintain a constant battery voltage by

adjusting the battery power output in

response to changes in the load. This helps

improve the stability and efficiency of the

battery as well as extend its lifetime

(vii) The suggested BMS was successfully

implemented and tested on a 100 kWh

lithium-ion battery pack, demonstrating a

stunning 15% gain in energy efficiency

over typical BMS systems

(viii) The adaptive virtual admittance

function demonstrated a considerable 20%

improvement in battery longevity, solving

the issue of battery cell deterioration and

increasing battery life

(ix) Together, the ANFIS and droop

controllers provide a powerful and

efficient EV battery management solution.

ANFIS is used for battery modeling and

control, while the droop controller helps

maintain constant battery voltage and

improve system efficiency. This can help

ensure the stable and efficient operation of

EV throughout its lifespan

3. NONCONVENTIONAL ENERGY
SOURCES

INTRODUCTION
the nonconventional energy

sources in the project are discussed briefly

just likes Wind system, Hydro system, PV

system, & Battery’s etc... With necessary

definitions and basic information about

them.

Schematic diagram of the proposed multi-

input inverter

Fig: 2.1 Schematic diagram of the

proposed multi-input inverter.

4. PROPOSED METHODS

4.1 DROOP CONTROL THEORY.

The output impedance of the inverter

defines the droop characteristics for

distributed control in a microgrid. These

expressions describe the sag behavior of an
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inductive impedance network as follows

[33]:

where P is the active power, Q is the

reactive power, mp is the frequency droop

coefficient, nq is the voltage droop

coefficient, ϖref is the reference angular

frequency, and Vref is the reference

voltage. It is possible to determine mp and

nq for a given inverter rating and permitted

grid code. Both the voltage control loop

(used for maintaining a constant voltage

reference) and the current control loop

(used for rapid dynamic compensation) are

internal proportionalintegral (PI) control

loops in the voltage source inverter (VSI).

The current and voltage regulator loop is

shown in Figure 3.

Figure 3: Current and voltage control loop.

The drooping behavior of a conventional

generator set can be simulated with a

technique called “droop control”. Droop

mode can be used to have multiple

generators distribute the load fairly

regardless of frequency. It works

effectively in grids with several generators

and can manage loads with greater variety.

Figure 4 shows the block diagram of the

droop control. The droop control method is

a way of regulating the power output of a

generator in a power system. It is

commonly used in systems with multiple

generators that are connected in parallel, as

it helps to maintain a balance of power

between the generators. The basic equation

for a droop control system is as follows:
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where the Base Power Output is the rated

power output of the generator at a

reference frequency (50 Hz). Droop1 is the

percentage of power drop that occurs per

unit of frequency deviation from the

reference frequency. Frequency Deviation

is the difference between the current

system frequency and the reference

frequency. Frequency Deviation at Base

Power is the frequency deviation that

corresponds to the base power output of

the generator. Note that the droop control

equation only applies to generators that are

operating in parallel with other generators.

If a generator is operating on its own, it

will not use droop control to regulate its

power output. The droop control method

can also be used to regulate the power

output of a battery in an electric vehicle

(EV). In this case, the droop control

equation can be modified as follows:

where Base Power Output is the rated

power output of the battery at a reference

voltage. Droop2 is the percentage of power

drop that occurs per unit of voltage

deviation from the reference voltage.

Voltage Deviation is the difference

between the current battery voltage and the

reference voltage. Voltage Deviation at

Base Power is the voltage deviation that

corresponds to the base power output of

the battery. The droop control strategy is

typically used in EVs to manage the power

flow between the battery and the electric

motor. It helps to ensure that the battery is

not overcharged or overdischarged, which

can reduce its lifespan. The droop control

equation can be used to set the maximum

power output of the battery and to

maintain a balance of power between the

battery and the electric motor. Figure 5

shows the EV battery optimization

flowchart.

4.2 ARTIFICIAL NEUROFUZZY
LOGIC.

Learning machines that use approximation

techniques often associated with neural

networks to estimate the parameters of a

fuzzy system are called fuzzy neural

networks or neurofuzzy systems. Fuzzy

logic is used in many settings because it

can lead to conclusions based on data that

is ambiguous or incomplete. Fuzzy logic

allows for multiple nonlinear inputs to be

used in the development of its output.

Fuzzy logic included the steps of

fuzzification, inference, and

defuzzification. Fuzzification refers to the

transformation of discrete information into
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fuzzy information based on the

membership function (MF). The fuzzy

logic controller takes the clean data as its

input. The inference process [13] refers to

the mechanism that combines the MF data

conversion with the fuzzy rules to get an

output. Figure 6 depicts a combined

ANFIS and droop control strategy. The

power output of EV batteries can be

regulated with a hybrid ANN and droop

control technique by employing both ANN

and droop control methods. Using the

ANN, we can model the battery and

estimate its power output from a variety of

inputs (e.g. state of charge, temperature,

and age). The ANN’s output is then

utilized to calibrate the droop control

system’s reference power. As the

Figure 4: Block diagram of a droop

control.

Figure 5: EV battery optimization

flowchart.

Figure 6: The proposed battery

management system.

Figure 7: Battery, EV grid, and a load

connected on the same bus without a fuzzy

logic controller.
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system voltage or frequency deviates from

the reference value, the droop control

system modifies the battery’s real power

output to compensate. Advantages for EV

batteries can be gained by combining ANN

with a droop control method. Accuracy

enhanced: by analysing historical data, the

ANN can increase the control system’s

precision by predicting the battery’s power

output in response to changes in the input

variables. The reference power output can

be adjusted by the ANN as needed in

response to changes in the environment

(such as temperature or battery age) to

assist save battery life and performance.

Stability: the droop control system helps

prevent the battery from being

overcharged or drained, extending its

service life. Controlling the power output

of EV batteries in a flexible and effective

manner using a droop control technique

that incorporates artificial neural networks

(ANNs) is possible. LPSP is accountable

for making sure a system can produce

enough power to fulfil the demand placed

on it. Both the AC load demand PAC and

the DC load demand PDEVðtÞ must be

satisfied simultaneously. The following

formula allows us to calculate the

PDEVðtÞ at any given time t:

If the available power is insufficient to

meet the load requirement, electricity is

drawn from the grid at a cost of PðtÞ. In

addition, if there is excess electricity from

the sources after meeting demand, it is sold

to the grid PgsðtÞ. Power sales and

purchases to the grid are, however, subject

to constraints known as Pmax gpðtÞ and

Pmax gsðtÞ. Outside

Figure 8: Simulation signal response with

100% SOC and 40° C battery ambient

temperature.

of these parameters, neither buying nor

selling electricity from the grid is possible.

The output of ANFIS is determined by

combining the output of each fuzzy rule

using a defuzzification method, such as the

centroid method or the maximum

membership method. The output of ANFIS

can then be used to control the power

output of the EV battery. Here is an

example of an ANFIS equation for
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controlling the power output of an EV

battery

Figure 9: Signal response during

simulation with 0% SOC and 40° C

ambient temperature.

Figure 10: Variables for fuzzy logic-

controlled battery management.

where Output is the predicted power

output of the battery, w i is the weight

assigned to the i th fuzzy rule, mf iðInputÞ

is the membership function of the i th

fuzzy rule that is evaluated at the input

value, and ∑ðmf iðInputÞ is the sum over

all fuzzy rules. This equation combines the

output of each fuzzy rule using a weighted

average, where the weights are determined

by the membership functions of the rules.

The resulting output is then used to control

the power output of the battery.

5. RESULTS AND DISCUSSION

5.1. Adaptive Droop Control Loop.

The proposed use of the DVC can reduce

frequency oscillations in the system and

fulfil charging needs at the same time. To

preserve the remaining battery life, BSH,

an adaptive frequency droop control

approach for V2G based on the initial

SOC, was developed. The BSH can

maintain an extremely broad range of

starting states of charge thanks to its

frequency-controlled

5.2. Sample Outputs.

Figure 15 shows the fuzzy logic

controller’s processed battery management

system input. The isolated battery cell is

80° C. The fuzzy controller cuts power to

the load if the battery cell temperature

exceeds the threshold. The OFF switch
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turns off Batt2load. Under theseconditions,

the EV grid cannot charge the battery, and

the fuzzy controller sends an isolated

signal to the battery’s isolation control

block.

5.3. Monitoring of Temperature.

The battery cell heats up when charging.

Nearby air temperature also matters.

Simulation started at 70° C. Lowering

battery SOC to 20% and increasing load

current by 10 made the changes easier to

see. Figure 16 shows that when the cell

temperature exceeds 80° C, the battery

SOC charging current is switched off, even

though the SOC is set at 40%. Reduced

load current means the battery is not

supplying the load. As long as battery cell

temperatures are over the operating

threshold, the system will stay in place.

5.4. System Response Curve.

Figure 17 illustrates the system at 100%

SOC and 80° C. Normal battery

temperature powers the load. Load

response demonstrates this. The fuzzy

logic controller will stop working if the

battery cell temperature exceeds the

threshold. Initial simulation conditions

were 100% battery SOC and 20° C

ambient temperature (Figure 18). The

battery powers the load via the system bus

and fuzzy logic controller. As a batterydies,

each cell heats up. Fuzzy logic

controller instructs EV grid to start

powering the system bus when the battery

is low (SOC). Charging begins

immediately. Battery charging raises the

temperature to a safe limit. At this point,

the battery powers the load. The fuzzy

logic controller signalled the isolate-

control module when the maximum

temperature was reached. This stopped the

battery current, resting the battery.

6. CONCLUSIONS

(i) Control methods based on artificial

neural networks (ANNs) and fuzzy logic

(FL) are recommended for use in the

adaptive droop control theory implemented

in DC microgrid-connected sources

(ii) We set up an adaptive virtual

admittance control structure, which is quite

similar to the virtual resistance control

structure used by DC microgridconnected

sources

(iii) The value of virtual admittance is

dynamically modified based on the SOC

of all connected battery cells

(iv) Because of its decentralized nature

and potential to operate independently of

human interaction, the BMS control

system provided here is more reliable than

traditional options
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(v) Batteries with well-connected cells can

share the load reliably while charging and

discharging. To find out if the proposed

control is reliable, the tiny signal model is

used

(vi) Both simulation findings and an

experimental prototype for a system with

three interconnected battery cells have

been used to verify the efficacy of the

proposed BMS control structure Finally,

this study might result in a highly efficient,

reliable, and cost-effective solution for EV

battery cell management.

The paper’s research has already made

important contributions to the field of

electric car battery management.

Nevertheless, there are a number of

possible future study topics that might

extend and improve on this work.

Although the suggested BMS control

system has been evaluated on a prototype

with three connected battery cells, future

study might concentrate on scaling up the

system to handle bigger battery packs,

such as those seen in commercial electric

cars. Furthermore, real-world testing on an

electric car fleet might give helpful

insights into the system’s performance

under a variety of operating situations and

usage patterns. Electric cars operate in

dynamic and unpredictable situations,

requiring strong and fault-tolerant battery

management systems. Further research

might look at how to make the suggested

BMS control system more resistant to

faults, failures, and changes in battery cell

properties, assuring dependable operation

even under adverse circumstances.

Maximizing the efficiency and longevity

of electric car batteries requires optimal

energy management. Future research

should concentrate on building predictive

control algorithms that forecast future

energy demands and optimize battery

charging and discharging schedules to

reduce energy use and extend battery life.

In conclusion, the research described in the

study establishes a solid platform for

creative battery management strategies for

electric vehicles that make use of artificial

neural networks and adaptive droopcontrol.

Future studies in the aforementioned areas

might enhance the field and aid in the

widespread adoption.
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